On the behaviour of the GMM estimator in persistent dynamic panel data models with unrestricted initial conditions

نویسندگان

  • Kazuhiko Hayakawa
  • Shuichi Nagata
چکیده

This paper investigates the behavior of the first-difference GMM estimator for dynamic panel data models when persistency of data is (moderately) strong and initial conditions are unrestricted. We show that initial conditions affect the rate of convergence of the GMM estimator under a local to unity system where autoregressive parameter is modeled as αN = 1− c/Np where N is the cross-sectional sample size and 0 < p ≤ 1. Specifically, we show that when initial conditions that renders the data to be mean-stationary are assumed, the GMM estimator is inconsistent when 1/2 ≤ p ≤ 1 while N1/2−p-consistent when 0 < p < 1/2. If initial conditions that renders the data to be mean-nonstationary are assumed, the GMM estimator is shown to be √ N -consistent for 0 < p ≤ 1. We also introduce a notion of “near mean-stationary” to take the closeness to mean-stationarity into consideration, and derive asymptotic distributions. A Monte Carlo simulation is conducted to assess the theoretical results. ∗I acknowledge the financial support from the JSPS Fellowship and the Grant-in-Aid for Scientific Research (KAKENHI 20830056) provided by the JSPS. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial conditions and moment restrictions in dynamic panel data models

Estimation of the dynamic error components model is considered using two alternative linear estimators that are designed to improve the properties of the standard firstdifferenced GMM estimator. Both estimators require restrictions on the initial conditions process. Asymptotic efficiency comparisons and Monte Carlo simulations for the simple AR(1) model demonstrate the dramatic improvement in p...

متن کامل

Quasi Maximum-Likelihood Estimation of Dynamic Panel Data Models

This paper establishes the almost sure convergence and asymptotic normality of levels and differenced quasi maximum-likelihood (QML) estimators of dynamic panel data models. The QML estimators are robust with respect to initial conditions, conditional and time-series heteroskedasticity, and misspecification of the log-likelihood. The paper also provides an ECME algorithm for calculating levels ...

متن کامل

The Optimal Choice of Moments in Dynamic Panel

Empirical researchers frequently use dynamic panel data models and employ Generalized Method of Moments (GMM) estimators (Hansen, 1982) to estimate model parameters. An important practical problem in the estimation of a dynamic panel data model is the choice of moments as it provides a large number of moment conditions. Even though adding moment conditions leads to efficiency gain according to ...

متن کامل

Gmm Estimation with Persistent Panel Data: an Application to Production Functions

This paper considers the estimation of Cobb-Douglas production functions using panel data covering a large sample of companies observed for a small number of time periods. GMM estimators have been found to produce large finite-sample biases when using the standard first-differenced estimator. These biases can be dramatically reduced by exploiting reasonable stationarity restrictions on the init...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2016